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Abstract—A closed form perturbation solution is obtained for the problem of transient heat transfer from a
constant temperature circular cylinder in a violently fluctuating flow of incompressible Newtonian fluids. The
small parameter used in the solution is the ratio of the maximum fluctuation amplitude to the cylinder
diameter. The solution is asymptotically valid for any values of the Prandt! and Reynolds numbers. The
natural convection is considered as the second-order effect. The solution is also applied to predict the initial
transient heat transfer from a wire which starts from rest an arbitrary translational motion. Numerical results
interms of time-dependent local and average Nusselt numbers are used to demonstrate the significant time lag
of heat transfer response to the fluctuating velocity. It is shown that an optimum frequency of sinusoidal
oscillation exists for the maximum net heat transfer at given flow parameters.

NOMENCLATURE T, time interval of uniform acceleration
a radius of cylinder ® dissipat'ion funcfio_n . .
C, fluid specific heat ¢ dnmeznsxzo_xzﬂess dissipation function,
g1 dimensionless gravitational acceleration, @/ (.6 /a’t") OV
gT(v8/a?) 2 ﬂ}nd thFrmgl diffusivity ,
g gravitational acceleration @ dimensionless frequency, (a*/v)a,
i unit vector in x-direction @1 aflgular. frequency .
i unit vector in y-direction A% d}mens?onless gra'dlent operator, aV,
k fluid thermal conductivity v, dimensional gradient operator
. f:/r:lisll:;t flux per unit area Dimensionless group
‘rl polar radial dils)tance Ec  thermal Eckert number, v/C,ATT
T temperature Gr  thermal Grashof numbe.r,. g[i.D:’A’I'/vz2
T, surface temperature of cylinder Gr  Grashof vector, [faAT(U —jg)1A6/)
T.  ambient temperature Nu  local Nusselt number, q/(sznT/a)
AT  temperature difference, T,— T, Nu  average Nusselt number, [i"v df
¢ time Pe Pefclet number, Pr Rey
7 characteristic time Pr fluid Prandtl number, v_/x = uC,lk
U cylinder velocity Re  Reynolds number, a?/vt
U eylinder acceleration Re, mean ﬂ(.)w Reynolds number, 2U,a/v
U, mean flow velocity Rey  fluctuation Reynolds number, ¢ Re
U, maximum cy]indf:r velocity Subscripts
Us  free strcam velocity 0 zeroth-order solution
u dimensionless cylinder velocity .
v fluid velocity 1 first-order solutlon'
v dimensionless fluid velocity 2 secopd-order solution
x,y  Cartesian coordinates (Fig. 1) m maximum value
Greek symbols
o ! dimensionless thermal diffusion time, z/Pr 1 INTRODUCTION
B coefficient of thermal expansion A GreAaT deal has been learned about the transient heat
¥ Euler’s constant, 0.5772157 transfer from a heated circular cylinder which
(0] dimensionless temperature impulsively starts from rest a constant velocity
0 polar angle translation [1-5]. These theoretical results cannot be
£ dimensionless fluctuation amplitude, é/a tested precisely with experiments, because it is very
u fluid dynamic viscosity difficult,ifnotimpossible, to produceinlaboratories an
v fluid kinematic viscosity impulsively started motion. On the other hand a great
p fluid density deal of experimental studies [6-16] have been reported
T dimensionless time, vt/a? on the effects of sinusoidal oscillation on the heat
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transfer from a cylinder. These results remain largely
unaccompanied by theoretical studies, due to the
analytical and numerical difficulties associated with the
large amplitude oscillation. Only a few theoretical
studies on the effect of small amplitude sinusoidal
oscillation are known [5, 17].

The purpose of our work is to fill in this apparent
information gap. As a start, we give a method of
predicting transient heat transfer from a circular
cylinder which starts from rest a small amplitude
fluctuation of an arbitrary form. The same results are
also applied to predict the initial transient heat transfer
for the cases of realistically producible cylinder
motions. Some numerical results based on the present
theory are compared with the known results. New
results are also given. A similar theory without any
consideration of the natural convectioneffect was given
earlier by Lin [18]. However, he did not give any
numerical results.

2. MATHEMATICAL SOLUTION

Consider the heat transfer from a constant
temperature circular cylinder of radius a fluctuating
with an instantaneous velocity —iU(t) in an initially
quiesient fluid as shown in Fig. 1. The fluid is
Newtonian and incompressible. Let the characteristic
time and amplitude of the cylinder fluctuation be
respectively ¢ and 6. Let the dimensionless velocity,
pressure, gradient operator, temperature and time be
respectively related to their dimensional counter parts
V,P,V,, Tandtby

v= V(IT/(S), p= P(F/a)z/pco’ V=aVv,

O = (T-TMTL—T,) = (T—T)AT, t=1(v/a?,
where p,, is the ambient density, T, is the ambient
temperature, T, is the surface temperature of the
cylinder and v is the kinematic viscosity. The

dimensionless governing equations of mass, momen-
tum and energy with respect to a reference frame
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F1G. 1. Geometry and coordinate system.
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attached to the cylinder are
S Vev=0, )
v/t +¢e Re(v*V)v =
—eReVp4+Viv—eRe Gr O, (2)
Pré®/dt+eRePrv-VO
=V20+&2RePrEce, (3)

where & = 8/a, ¢ = ®/(5/at)* ® being the dissipation
function, and Pr, Re, and Gr the Prandtl number, the
Reynolds number and the Grashof vector, respectively.
Equation (1) is automatically satisfied by the stream
function ¢ which is related- to the r-and 0 velocity
components in the cylindrical coordinates by

W
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In terms of i, equations (2) and (3) can be written as

i) .. [HC)
(E —Vz)Vzl// =¢G, [(u sin 0+g, cos 0)—5r_

1 . . 5@ Re avavzw)
+;(u cos 8 —g, sin O)E] —aT—W, 4
] ) o Re Pr ¢(y,®)
(P}'E—‘v )@— £ r 6(}',9) s (5)

where the upper dot denotes differentiation with 7, and
u() = UW/3/1), G, = PATYe,
g1 = g/@’t/vd),
g being the gravitational acceleration, and

oy,F) oy OF &y oF

is the Jacobian with F standing for V3 or @. The initial
conditions for equations (4) and (5) are

Y(r,0,1)=0 and O(,0,7)=0 t<0.
The boundary conditions are
oy 10y
Pk —;%—O, O, 0,t)=1 atr=1,
1
_‘/’ = —u(t)sin 0, ——l =u(t)cos 0 atr— co.
or r éo

The formulated initial-boundary value problem will
be solved with a regular perturbation series

=3 ey, O=73 0,
=0 n=0

Thisseriessolutionisexpected to be validfor all time for
small amplitude but otherwise arbitrary fluctuation
such that ¢ = §/a « 1 but Re, Pr, and Gr may be finite
[19-21]. The same series expansion is also valid for any
arbitrary u(r) during the initial time when & remains
much smaller than one [19-21]. For the case of
fluctuating flow about a cylinder, the characteristic
time is 1/w,, and Re = w,a*/v, where w, is the
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characteristic frequency. The environment is said to be
violently fluctuating with respect to the cylinder, if w, is
solarge that Re > 1. We consider in this study only the
cases in which

Gr=0(l), Ec=0(), ¢=0(1) ande« 1.

For these cases, i, and O, are decoupled in equations
(4) and (5) up to O(e?) for any finite Re and Pr. The case
of Gr = O(e) was considered by Lin [18].

The zeroth-order solution for the stream functiony,
hasalready been obtained in otherapplications[19,20]
with a novel integral transformation of the dependent
variable followed by the method of Laplace transform,
and is given by

Yo = Jolr,7)sin 6,

So=u(1) (% —r)+ % j' xo(s, 7)s ds,

1

xo(r,7) =2 I! u(A)xo(r,t—A)d4, (6)
0

2 (= d
Zolr, 1) =14+ = j exp (— @) Colw,r) =2,
T Jo «w

Colw,r) = [Jo(wr) Yo(w) — Yo(wr)Jo(w)]
+ i)+ Yiw)],

where J; and Y, are respectively the Bessel functions of
the first and second kind of the zeroth-order. The
zeroth-order solution for the temperature field @, can
be obtained from the unsteady heat conduction
equation by use of the Laplace transform, and is given
by

2 (* d
Op=1+= J exp (—w?t/Pr)Cylw, 1) e
T Jo ®

Higher order solutions ¥, ¥, and ©,, ©, can be
obtained respectively from the unsteady Stokes
equation and heat equation with convective terms as
non-homogeneous sources. The boundary conditions
are all homogeneous. The reason the convective terms
‘canbetreated asknownsourcesevenatfinite Reand Gr
is because they are dominated by the local time terms
[19-21]. The method of solution is novel but rather
involved. It is documented elsewhere [22]. Only the
final solutions are quoted below.

Y1 = Re fi,(r,7)sin 2041 (r,7) sin O+f,{r, 1} cos O,
Q]

2 = Re[ f,(r,7) sin 0+f,,(r, 1) sin 30]
+Re[ £5,(r, 1) sin 20+15,(r, 7} cos 20
+/2a(r, 7) +f24(r, ) sin 0+S3,(r, 1) cos 0], (8)
©, = Re PrJ(r,t)cos 0, )
9, = (Re Pr)[ X ((r,7) cos 0 — X ,{r,7)sin O]
+(Re Pr)*[M(r,t)cos? 0+ N(r,7)sin? 8

+Q(r,7)cos 201, (10)
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whereall functions of r and t are given in the Appendix.
These functions will be found useful by the reader who
wishes to obtain numerical results for the particular u(r)
encountered in his practice but not included in the
present numerical examples.

The local heat transfer from the cylinder is

kAT
a

0
qg= [—a (®O+£®l +82®2)+0(83)] N
r

r=1
and the local Nusselt number is
Nu = q/(kAT/a),

where k is the thermal conductivity. The net heat
transfer from the cylinder is the integral of g from 0 = 0
to 2r, and the average Nusselt number is

2z
Nu= I Nu do.
°

It follows from equations (6)(10) that
Nu= —2r0, —=n{e Re Pr)*{M,+N,]+0(3), (11)
—Nu = Qg +¢ Re PrJ, cos 0+ (g Re Pr)?
x [M, cos? 0+ N, sin? 0+Q, cos 20]
+¢2 Re Pr[X, cos 0—Y, sin 01+ 0(%), (12)

where subscript r stands for partial differentiation with
respecttor,and all fupctions of rare evaluated atr = 1.

The closed form solutions we have obtained involve
time in the integrands of multiple integrals. Thus the
instantaneous heat transfer depends on the entire past
history of the cylinder motion and heat transfer. As a
consequence, the determinations of the instantaneous
Nusselt number requires the evaluation of the same
multiple integrals for each 7 starting from 7 = 0. This
makes the necessary numerical computation very time
consuming. This is the major disadvantage of the
present method. The advantage of the method is that
the same solution applies to any form of u(z) subjected
to known constraints. On the other hand any direct
numerical method requires a new program for each
form ofu(t). A direct numerical program for a particular
form of u(r)included in our computation does not seem
toexist. It should be pointed out thatequation (11)does
not state that Nu ~ Pr2, since Pr also appears in the
integrands of A, and N,. However, Re does not appear
in the integrands, but appears only in the coefficient of
equation (11). Thus

Nu+2n0,(1,7) ~ (€ Re)?

for any given Pr and 1. Hence Nu for any Re can be
inferred from the value of Nuat any other value of Reat
the same 7 and Pr.

3. RESULTS AND DISCUSSIONS

Due to the limited computer time available, we
obtained only the results for short time. Short-time
expansions of X, and V; for v« | are used in all
numerical integrations by the Gauss quadrature [23].
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First consider the case of a cylinder with u(z) and
©(1, 6, 1) both given by the unit step function; i.e. the
motionand heating of the cylinder are both impulsively
started. It follows from the nondimensionalization
schemethat? = vé/V = /U, and ¢ Re = U_a/v = Rey
where U, is the uniform cylinder velocity. The Nu
valuesfor thecase of Rey = 100and Pr = 0.73aregiven
in Fig. 2 together with the corresponding results of Jain
and Goel[1]and Sano [2]. The agreement with Sano’s
results obtained from the matched asymptotic
expansion is better than with Jain and Goel’s results
obtained with the boundary layer theory.

An impulsively started motion is extremely difficult,
if not impossible, to produce. In actual situations, the
cylinder motion is more like that of a uniform
acceleration until a finite time 7. and then followed by a
constant velocity. Nu values corresponding to two
valuesoft.are givenin Fig. 3 together with the results of
the impulsively started case. As expected, the average
Nusselt numbers of the impulsively started case bound
from above those of the other two more realistic cases.

Next consider the case of sinusoidal fluctuation
starting from rest. In this case

t = v3/V = sin (wt)d/w,é sin(w,t) = 1/,

where o, is the dimensional frequency. Hence ¢ Re=
@,6alv = Rey. The results of Nu for o = w,(a’/v) =
1300 are given in Fig. 3. It is seen that the cylinder
fluctuation at this particular value of w cannot enhance
the heat transfer beyond that corresponding to the
impulsively started cylinder at the same Rey, at least
during the initial time. To study the effects of the
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F1G. 2. Variation of average Nusselt number with time at Pr

= 0.73 and Rey, = 100 for the case of an impulsively started

uniform motion. , present study ; —-—, Jain and Goel
{1]; -----, Sano [2].
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FiG. 3. Variation of average Nusselt number with time at Rey

=200 and Pr =0.73. —, impulsively started uniform

motion; -----, sinusoidal fluctuation at w = 1300; —-—,

uniform acceleration until t, = 0.01 then followed by a

constant velocity ; ———, uniform acceleration until 7, = 0.1
then followed by a constant velocity.

fluctuation frequency on the heat transfer, we plot the
fluctuating part of the Nusselt number, i.e. Nu, = Nu
— Nu,inFigs.4and 5,where Nu, = —210,,(1,1)isdue
to transient heat conduction. N, for two values of Pr
areplotted in Fig. 6. As the frequency increases from 40
to 1300, the magnitude of the fluctuating heat transfer
decreases dramatically. At relatively high frequencies,
the oscillation in velocity appears to occur so rapidly
that there is not enough time to develop a large
temperature gradient close to the cylinder.
Consequently, only a small erratically fluctuating
quantity of heat is transferred to the ambient fluid
duringthe transience. Onthe other hand,as wdecreases
from 40 to 1, the fluctuating heat transfer is again
sharply suppressed and approaches zero as w— 0.
Thus there must exist an optimum frequency, w,y,
betweenw = t and 1300such that Nu, is the maximum,
The heat transfer responses at w = 40, 100 and 1300 in
each first cycle of oscillation lag behind the
corresponding sinusoidal velocity by 0.4227x, 0.4586,
and 1.109x, respectively. The period of the first cycle is
the time required for the heat transfer to reach the
second minimum after the start of the cylinder
oscillation. The phase lag diminishes as frequency
decreases as expected. It is interesting to note in Fig. 4
that the values of N, corresponding to the negative
velocity are higher than those corresponding to the
positive velocity during the oscillation. This pumping
effect disappears in the case of higher frequency shown
in Fig. 5.

Similar computations show that both the phase lag
and the amplitude of the fluctuating heat transfer
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increase as Pr is increased, when w and Rey are held
fixed [22]. This is quite to be expected, since an increase
in Pr means an increase in thermal diffusion time
relative to the momentum diffusion time. However, the
phase lag does not vary with a change in Rey = ¢ Re,
since Rey is not coupled with time in the expression of
Nu,. As is already pointed out at the end of the last
section, Nu, ~ Ref.

There do not seem to exist measurements of initial
transient heat transfer that we can use for direct
comparisons. However, there are some known works
which are related with the present study. Antonini et al.
[16] measured the stationary heat transfer from a
constant-temperature hot wire which oscillates
sinusoidally in an initially quiescent fluid until the flow

becomesstationary. Theyfound that there was alwaysa.

phase lag between the heat transfer fluctuation and the
velocity fluctuation at finite frequencies. The same is

found during the transience studied here. It appears
that the phase lag which occurs during the transience
diminishes but will not vanish as t — c0. Davies [17]
found with an Oseen-type approximation that the
phase lag always exists unless w, < 0.2nU%/y, where ¥
is the thermal diffusivity and U, is the constant mean
velocity of the ambient fluid in a stationary motion with
a small amplitude sinusoidal oscillation. This
statement implies that there will always be phaselags as
U, — 0(which is the case in our study); and that there
exists a critical frequency above which there will always
be phase lags in stationary flows with finite mean
velocity. Apelt and Ledwich [5] studied numerically
the transient heat transfer from a constant-temperature
cylinderinaflow with asinusoidal variationin velocity.
The amplitude of the variation is 10% of the mean
velocity of the flow which is at Rey = 2U,ya/v = 10.
They found a phase lag 0f 0.2283x at a frequency as low
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FIG. 5. Variation of fluctuating heat transfer (Nu,) with time and = 1300, Rey = 10,and Pr = 0.73. —. —,
sin(wt).
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as 0.0692 Hz. Our new findings for transient flows
complement the known results of Apelt and Ledwich
[5] and Davis [17].

Figure 7 gives the local Nusselt number at 0 = n/4
and = for the case of an impulsively started motion. The
corresponding results of Sano [2] and Jain and Goel
[1] are also given in the same figure for comparison.
The agreement is better near the rear stagnation point
than at the forward stagnation point. The agreement
seems to improve at larger values of 7. In Fig. 8, we
compare the present results of Nu with those of Sano

20 L I I [

{ 1 | 1
600 800

I VR N B |

(o]
o) 200 400 1000

1/t

FIG. 7. Variation of local Nusselt number with time at Rey

=100 and Pr=0.73 for the case of impulsively started

uniform motion. , present study ; -----, Sano [2]; —-—,
Jain and Goel [1].

[2] at Rey = 100and Pr = 0.73. The agreement is only
fair. However, the agreement improves when only the
first two terms of equation (12) are retained in
computation. Sano found that for 7> 0004 a
minimum Nu exists between 0 =0 and 7/2. He
suggested that this may be related to the flow
separation. However, his numerical results show the
existence of a minimum for both separated and
unseparated flows. The local minimum of Nu does not
seem to have been found experimentally. It should be
pointed out that the boundary layer approximation
used by Sano in his inner solution is probably invalid
during the initial time when a boundary layer is not yet
established. The present method does not require the
boundarylayer approximation. Figure 9 showsthat the
idealized model of an impulsively started uniform
motion overestimates near the forward stagnation
point but underpredicts near the rear stagnation point
the local heat transfer from a circular cylinder which
moves with a more realistic ‘impulsively’ started
uniform velocity. Figure 10shows theeffect of Pron Nu.
Figure 11 gives some typical results for the case of a
sinusoidally oscillating cylinder.

4. CONCLUSIONS

The closed form solution we obtained can be used to
determine thelocalas wellasthe net heat transfer froma
constant-temperature cylinder which starts from rest
any arbitrary translational fluctuation of amplitudes
much smaller than the cylinder diameter. The same
results may also be applied to predict the initial
transient heat transfer from an impulsively started as
well as more realistically possible motion of the
cylinder. At given Rey, Prand Gr, it is shown that there
exists an optimum frequency of sinusoidal oscillation
for the maximum net heat transfer. Based on our
numerical results on the phase lag of heat transfer and
previous workers’ results discussed in the last section,
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we tentatively conclude that the quasi-steady response
assumed in hot-wire or hot-film calibration is invalid,
since all possible frequencies of fluctuation are present
in turbulent flows with or without mean velocity. This
conclusion is tentative, since our results are valid only
for small amplitude fluctuation whilein turbulent flows
the fluctuation amplitudes are mostly greater than the
hot-wire diameter. Efficient numerical programs
capable of predicting the net and local heat transfer in
large amplitude fluctuating flows are prerequisites for
making the above conclusion more definitive. Until
these programs become available, the numerous
experimental studies of the effects of large amplitude
oscillations on heat transfer cited in the introduction
will remain unsupported by theories. However, the
present analytical results may serve as testing stones for
the numerical accuracy of the above mentioned
computer program to be developed in the near future.

Measurements of ‘transient’ local heat flux due to
convection do not seem to exist. Finally we point out
that equation (11) can be solved as an integral-
differential equation to predict u(r) with the net heat
flux as measured input [22].
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APPENDIX

filn) =" | xus0s%ds, (,j=1,2),
J L J!

1 @ T
x;i(r, 1) = 7 f '[ [E\(s,r, 1= = Vi (5,1, 1= A)]Gls, A)s? da ds,
1 Jo

1 rt+s? rs
Eisr =g o[ - |u 7]

+iw
V= _[7 2[K, @)K (vs)11(0)/K,(v)] exp [v*e]v do.

y—io

Where I, and K, are respectively the modified Bessel functions of the first and second kinds of the first order,

G{r,1) =05 J'r [F;is, t)/s]ds,
1

1 u 1 (" u 1 ("
Fy(r,)= — ;I:xor<xo—u— i f vXo dv>+x0"<ur-— P J vXg dv):l,
1 1

Fi,=0,

Fy; = —r~'(fo, %11, —foX1i.+ X0, f1r.— X0, f11:

i

l r
Sir,7) = 7‘[ xjifs, )5 ds, (=12 j=12),

1
X =f J f Ej(w,r, 1= C,{w,r)Gyr'o do di dr,
1 JoJo
(G11,G12) = G1(th, G)[Oo(r, 1) - 11,

(G21,G22) = Gn[<@1,'[ (91,/r)dr)]( g g,.)’
1 —g91 U

Ex,r,7) = exp[—?t]Cyw,7),

Cyle,1) = [Jo(wr) Yo(w) — Yolwr)o(@))/[J§(w) + Yi@)]'?,

Sra=17} _[ X,4(s,7)s ds,

1

x“:,[ '[ J Ey(w,r,1—2)Cy(w,r')G,,r'o dw dA dr,
1 JoJo

G,, =05 j F, (s, 7)ds,
1

Fao = 1 [ folxy1, +rx01,) =1, X0, + 2(fo, %11, —f1%0,.)],

Ju= "_3‘[' X35, 7)s% ds,

1

@ T d
Xap = ’_ZI J‘ [E\(r,e =2 =Vyl(s,r, 1~ A)] 5621;(5:)-)35 d2 ds,
1 Jo d

V= 2[’“ [K (K () L) K000 do,

r—io

Gy =05 J‘ s™1F,(s,1)ds,
1

Fyp = F3,—4(tfo,%11,—/11%0,.),

Sz = f 57 1x,5(s,7) ds,

1
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=] T d
Xy3 = TJ J [E(r,x=2)—Vi(s,r,t—4)] T [G2s(s, 1))s? d2 ds,
1 Jo g

G,y3 = O.SI F,4(s,7)s ds,
1
Fa3 = r ' (fo.x12,4f0%12, =S 12,%0,—f 12%0,.)s

J{r,7) = J‘w J’ [E (r,2a—2)— Vy(r,s,a—A)]H(s, A)s dA ds,
1 Jo

1 = @) ffr,2) Lw exp (—0™1/Pr)Cy(w,1)do,
Cil@,7) = [Vi(@nJo()—J (o) Yo(@))/[Te) + Yi@)]-
Xr,9)= le L [Ey(r,a—2)— Vi(s,r,a— )]G (s, A) dA ds,
Gir,1) =10, (i=1,2),
(M,N) = le L J:c E{w,0— A[Cplr, 2, Cx(r', H1Calw, r)w do d2 dr,

Cy=JoJ Cy= Jfo,»
(= (= 1 r2+s? rs 4(z—2)
2=, J {4(1—;-)2 “"[_4(1—2)](”°[2<a—z)]_[’+ r ]

x I, [ﬁ]) + B Viis,r,a—2)—Vy (s, r,a—).):l} B(s, 2)s* d2 ds,

B(r,7) = 's‘z{CQ(s, 1)—2r~{M(s,7)— N(s,7)]} ds,

J1

CQ(ra 1) = 2f14(r, )70, (r, T)/Pr.

TRANSFERT THERMIQUE VARIABLE A PARTIR D'UN FIL DANS UN ENVIRONNEMENT
FLUCTUANT VIOLEMMENT

Résumé—Une solution analytique de perturbation est obtenue pour le probléme du transfert thermique
transitoire 4 partir d’un cylindre circulaire 4 température constante dans un écoulement de fluide newtonien
incompressible fluctuant violemment. Le paramétre utilisé est le rapport de I'amplitude maximale de Ia
fluctuation au diamétre du cylindre. La solution est valable asymptotiquement pour une valeur quelconque
des nombres de Reynolds et de Prandtl. La convection naturelle est un effet du second ordre. La solution est
aussi appliquée au transfert thermique initial d’un fil qui part du repos pour un mouvement de translation
quelconque. Des résultats numériques en fonction des nombres de Nusselt locaux, variables par rapport au
temps, et moyens sont utilisés pour montrer le déphasage de la réponse thermique a la fluctuation de vitesse.
On montre qu'il existe une fréquence optimale de Ioscillation sinusoidale, pour un transfert thermique
maximal avec des paramétres donnés de 'écoulement.

INSTATIONARER WARMEUBERGANG AN EINEM DRAHT IN EINER STARK
FLUKTUIERENDEN UMGEBUNG

Zusammenfassung—Fiir das Problem des instationdren Warmeiibergangs an einem kreisformigen Zylinder
konstanter Temperatur in einer stark fluktuierenden Strémung von nichtkompressiblen Newtonschen
Fliissigkeiten, wu.de mittels Strungsansatz eine geschlossene Losung erhalten. Parameter in der Lsung ist
das Verhiltnis von maximaler Amplitude der Fluktuationen zum Durchmesser des Zylinders. Die Losung ist
fiir alle Werte der Prandtl- und Reynoldszahlen asymptoisch giiltig. Die freie Konvektion wurde als Einflu3
zweiten Grades beriicksichtigt. Mit der Lésung kann auch der anfanglich instationidre Warmetibergang an
einem Draht, der aus der Ruhe heraus eine beliebige translatorische Bewegung beginnt, berechnet werden.
Numerische Ergebnisse in Form von zeitabhingigen 6rtlichen und mittleren Nusseltzahlen werden
verwendet, um die kennzeichnende Phasenverschiebung des Warmeiibergangs gegeniiber der fluktuierenden
Geschwindigkeit darzustellen. Es wird gezeigt, daB eine optimale Frequenz bei sinusférmiger Schwingung fiir
maximalen Wirmeiibergang bei vorgegebenen Strémungsparametern existiert.
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Transient heat transfer from a wire in a violently fluctuating environment

HEVCTAHOBUBUIHHACH TEMJIONEPEHOC OT NPOBOJIOKH B CHJILHO
NYJIbCUPYIOUIEN OKPYXXAIOUIEI CPEIE

AnHoTau#s—B 3aMKHYTOM BHJIE MONYYEHO PELUEHHE B BO3MYILEHHAX A/ 33Aa4YH HEYCTAHOBHBLIETOCH
NepeHoca TeNaa OT KPYrosoro INUIHHAPA ¢ MOCTOSHHOI TeMmepaTypoii B CHJIBHO MYJIbCHPYIOLIHX
MOTOKAX HECKHMAEMBIX HbIOTOHOBCKHX xuaxocTeii. Mcnoapsyemeuiii B pewenni Maneiii napamerp
npeacTassifeT coboil OTHOUIEHHE MAKCHMANMBHON aMIIMTYAL koaebanuil XK AHaMeTpy WILTHHApA.
Peltenne BISCTCS acHMNTOTHYECKH CNPABEUTHBBLIM MNpH JIOOLIX 3Inayennax uucen [lpanarns u
Pefinoaraca. EcTecTBennas koHBekuHs paccMaTpHBaeTcs kak 3¢ddext sroporo nopsaaka. Pewenue
MOXKET HCNOABL3OBATHCA TAKKe [UIS PacieTa HEYCTAHOBHBILEroCs MepeHoca Temia OT IILTHHAPA,
COBEPILAIOLIEro NPOH3BO.ILHOE NOCTYATEIbHOE ABIXEHIE I3 COCTOSHNS NOKOA. UHC/IeHHbIE Pe3yabTATHE
B BH/E 3aBHCAIIHX OT BpPeMEHH JIOKanbHBIX M cpeanux uwucen HyccensTa menonbsytores A1 aeMoH-
CTpaunH BIHAHHA NyIbCalHil CKOPOCTH HA TEMJIOBYIO HHEpUMIO UMAuHApa. [lokasaHo, 4Tro MnA
MAKCHMALHOTO Pe3y/IbTHPYIOLIET O TEMNIOBOTO NOTOKA [PH 3aJaHHLIX NapaMeTpax TEYeHHs XapaKTepHa
onpeaeneHHas ONTHMAIbHAS HaCTOTa CHHYCOMAANLHBIX Konebanuii wiwinuapa.
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